

晶采光電科技股份有限公司AMPIRE CO., LTD.

SPECIFICATIONS FOR LCD MODULE

CUSTOMER	
CUSTOMER PART NO.	
AMPIRE PART NO.	AM-640480E5TMQW-00H-A(R)
APPROVED BY	
DATE	

☐ Preliminary Specification

☑ Formal Specification

AMPIRE CO., LTD.

4F., No.116, Sec. 1, Xintai 5th Rd., Xizhi Dist., New Taipei City221, Taiwan (R.O.C.)

新北市汐止區新台五路一段 116號 4樓(東方科學園區 A棟)

TEL:886-2-26967269, FAX:886-2-26967196 or 26967270

Approved by	Checked by	Organized by
Patrick	Kokai	Mark

^{*}This specification is subject to change without notice.

Date: 2021/09/14 AMPIRE CO., LTD.

RECORD OF REVISION

Revision Date	Page	Contents	Editor
2021/09/14		New Release	Mark

1. INTRODUCTION

This is a color active matrix TFT-LCD that uses amorphous silicon TFT as a switching device. This model is composed of a 10.4 inch TFT-LCD panel, a driving circuit and LED backlight system. This TFT-LCD has a high resolution (640(R.G.B) X 480) and can display up to 262,144 colors.

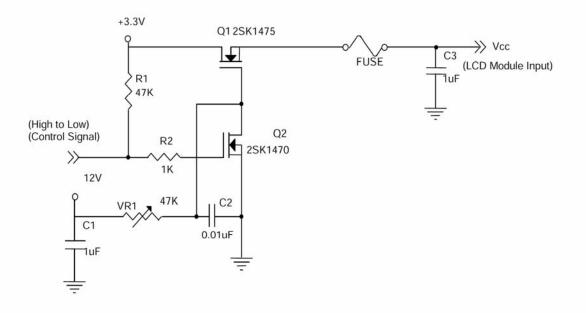
DE mode

New LCD IC: HX8016-C06

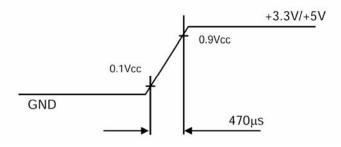
2. PHYSICAL SPECIFICATIONS

Item	Specifications	unit
Display resolution(dot)	640RGB (W) x 480(H)	dots
Display area	211.2 (W) x 158.4 (H)	mm
Pixel pitch	0.33(H) x 0.33 (V)	mm
Color configuration	R.G.B Vertical stripe	
Overall dimension	225.5(W) x 176.3(H) x 9.34(D)	mm
Brightness	500	cd/m ²
Contrast ratio	1500 : 1	
Backlight unit	LED	
Display color	262,144	colors

3. ABSOLUTE MAXIMUM RATINGS


ITEM	SYMBOL	MIN	MAX	UNIT	NOTE
Power Supply Voltage	V _{CC}	-0.3	5	V	
Signal Input Voltage	DCLK, DE R0~R5 G0~G5 B0~B5	0.7Vcc	V _{CC}	V	
Operation Temperature	Тор	-30	80	$^{\circ}\!\mathbb{C}$	(1)
Storage Temperature	Tstg	-30	80	$^{\circ}\!\mathbb{C}$	(1)

4. ELECTRICAL CHARACTERISTICS

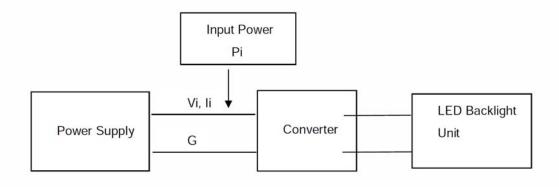

4-1 TFT LCD Module voltage

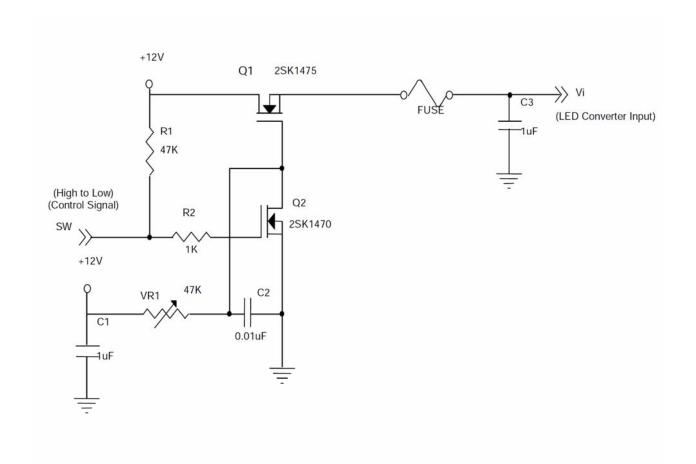
Parameter		Cumbal	ĺ	Valu	ie	Unit	Note		
		Symbol	Min.	Тур.	Max.	UTIIL	Note		
Dower Supply Voltage		vcc	3.0	3.3	3.6	V	at VCC=3.3V		
Power Supply Voltage		VCC	4.75	5.0	5.25	V	at VCC=5.0V		
	Mhito		390	490	540	mA	(3)a, at VCC=3.3V, 60Hz		
Dower Cumply Current	White		290	390	440	mA	(3)a, at VCC=5.0V, 60Hz		
Power Supply Current	Dlook		370	470	520	mA	(3)b, at VCC=3.3V, 60Hz		
	Black		280	380	430	mA	(3)b, at VCC=5.0V, 60Hz		
Power Consumption		PL		1.617		W	VCC=3.3V, 60Hz		
Logic input voltage		V _{IH}	0.7V _{CC}		V _{CC}	V			
		V _{IL}	0	-	0.3V _{CC}	V			

Note (1) The module is recommended to operate within specification ranges listed above for normal function. Note (2) Measurement Conditions:

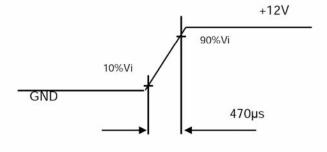
Vcc rising time is 470µs

Note (3) The specified power supply current is	under the conditions at Ta = 25 \pm 2 $^{\rm o}C,$ f_{ν} = 60 Hz, where as a
power dissipation check pattern below	is displayed.
a. White Pattern	b. Black Pattern
Active Area	Active Area

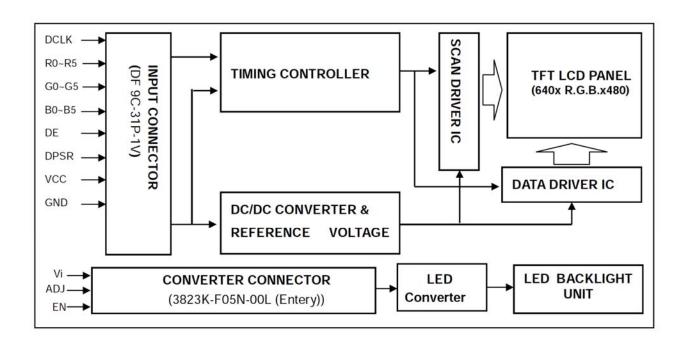

4-2 TFT LCD current consumption


Doro	meter	Cumbal	Value			Unit	Note
Para	meter	Symbol	Min.	Тур.	Max.	Unit	Note
Converter Power Supply	/ Voltage	Vi	10.8	12.0	12.6	V	(Duty 100%)
Converter Power Supply Current		l _i		0.48		А	(1) Vi = 12V (Duty 100%)
Converter Power Consu	Pi		5.76		w	(1) Vi = 12V (Duty 100%)	
EN Control Level	Backlight on		2.0	3.3	5.0	V	
EN CONTO Level	Backlight off		0		0.8	V	
PWM Control Level	PWM High Level		2.0	3.3	5.0	V	
PVVIVI CONTION Level	PWM Low Level		0		0.8	V	
PWM Control Duty Ratio)		20		100	%	
PWM Control Frequency		f _{PWM}	190	200	20K	Hz	
LED Life Time		L _L	50,000			Hrs	(2)

Note (1) LED current is measured by utilizing a high frequency current meter as shown below:


Note (2) The lifetime of LED is defined as the time when it continues to operate under the conditions at $= 25 \pm 2 \,^{\circ}\text{C}$ and $I_{\text{LED}} = 70\text{mA}_{\text{DC}}$ (LED forward current) until the brightness becomes $\leq 50\%$ of its original value. And minimum LED lifetime is estimated and provided by Nichia in Japan.

Operating LED under high temperature environment will reduce life time and lead to color shift.



Vi rising time is 470us

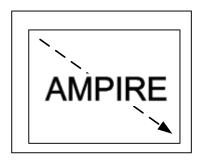
5. BLOCK DIAGRAM

6. INTERFACE

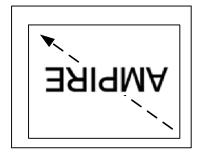
6-1 LCD Module interface (CN1):

Pin	Name	Description
1	GND	Ground
2	DCLK	Dot clock
3	N.C.	N.C.
4	N.C.	N.C.
5	GND	Ground
6	R0	Red data (LSB)
7	R1	Red data
8	R2	Red data
9	R3	Red data
10	R4	Red data
11	R5	Red data (MSB)
12	GND	Ground
13	G0	Green data (LSB)
14	G1	Green data
15	G2	Green data
16	G3	Green data
17	G4	Green data
18	G5	Green data (MSB)
19	GND	Ground
20	B0	Blue data (LSB)
21	B1	Blue data
22	B2	Blue data
23	В3	Blue data
24	B4	Blue data
25	B5	Blue data (MSB)
26	GND	Ground
27	DE	Data enable signal
28	VCC	Power supply
29	VCC	Power supply
30	N.C.	Reserved, please keep it floating.
31	DPSR	Selection of scan direction

Note (1) Connector Part No.: DF 9C-31P-1V or equivalent.


6-2 Backlight interface (CN2):

Pin	Symbol	Description	Remark			
1	Vi	Converter input voltage	12V			
2	V_{GND}	Converter ground	Ground			
3	EN	Enable pin				
4	ADJ	Backlight Adjust	PWM Dimming			
5	NC	Not Connect				


Note (1) Connector Part No.: 3823K-F05N-00L (Entery) or equivalent

Note (2) User's connector Part No.: H208K-P05N-02B (Entery) or equivalent

6-3 Scanning DirectionThe following figures show the image see from the front view. The arrow indicates the direction of scan.

Normal scan (DPSR: Low or Open)

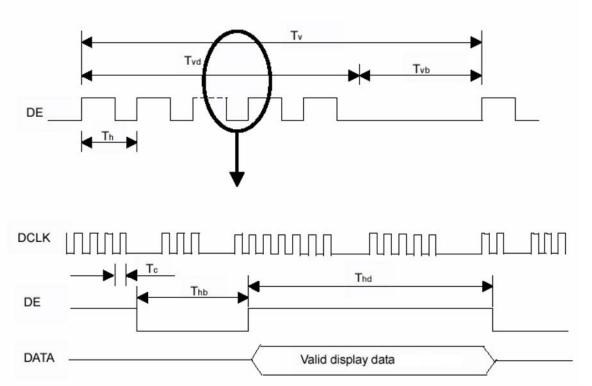
Reverse scan (DPSR: High)

7. TIMING SPECIFICATION

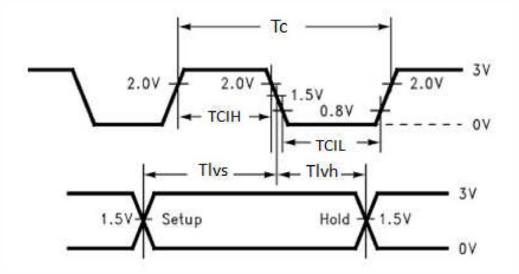
7-1 Input Signal Timing Specifications.

The input signal timing specifications are shown as the following table and timing diagram.

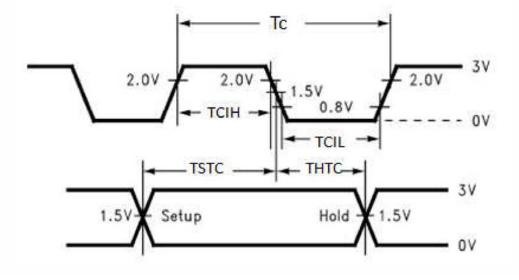
Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	Fc	21	25.175	29	MHz	-
Dot Clock	Period	Тс	34.48	39.72	47.62	ns	
	High Time	TCIH	0.35 Tc	0.5 Tc	0.65 Tc	ns	
	Low Time	TCIL	0.35 Tc	0.5 Tc	0.65 Tc	ns	
Dat Data	Setup Time	Tlvs	8	-	-	ns	(4)
Dot Data	Hold Time	Tlvh	12	3.0	10-1	ns	(4)
DE	Setup Time	TSTC	8	07.0	251	ns	(5)
DE	Hold Time	THTC	12	57/3	9859	ns	(5)
	Frame Rate	Fr	-	60	-	Hz	
Harizantal Astina Diaplay Tarm	Total	Th	730	800	900	Th	Th=Thd+Thb
Horizontal Active Display Term	Display	Thd	1-11	640		Th	-
	Blank	Thb	90	160	260	Th	-
	Total	Tv	485	525	576	Tc	Tv=Tvd+Tvb
Vertical Active Display Term	Display	Tvd	-	480	10.5	Tc	-
87.5	Blank	Tvb	5	45	96	Tc	-


Note: (1) This module is operated by DE only mode

(2) Frame rate is 60Hz


Date: 2021/09/14

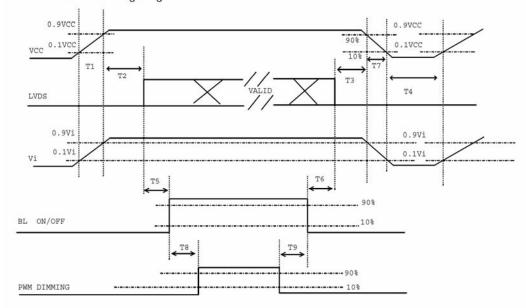
(3) The Tv(Tvd+Tvb) must be integer, otherwise, this module would operate abnormally.


INPUT SIGNAL TIMING DIAGRAM

(4) Clock and data setup/hold and high/low time input waveforms.

(5) Clock and DE setup/hold and high/low time input waveforms.

7-2 Color Data Assignment


The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

											ta Siç								
	Color	Red					Green						Blue						
		R5	R4	R3	R2	R1	R0	G5	G4	G3		G1	G0	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	;	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	4	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Scale	3	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(61)	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
	Green(62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Blue(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	1	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

7-3 Power On/Off Sequence

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should follow the conditions shown in the following diagram.

Power ON/OFF sequence

- Note (1) Please avoid floating state of interface signal at invalid period.
- Note (2) When the interface signal is invalid, be sure to pull down the power supply of LCD VCC to 0 V.
- Note (3) The Backlight converter power must be turned on after the power supply for the logic and the interface signal is valid. The Backlight converter power must be turned off before the power supply for the logic and the interface signal is invalid.

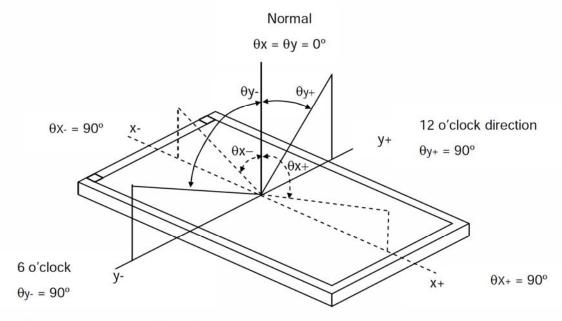
Donomotor		Unito			
Parameter —	Min	Тур	Max	Units	
T1	0.5	380	10	ms	
T2	0		50	ms	
Т3	0	-	50	ms	
T4	500	-	-	ms	
T5	200	(#C)	-	ms	
T6	20	-	-	ms	
Т7	5	-	300	ms	
T8	10	(-)	-	ms	
Т9	10	(=)	-	ms	

14

8. OPTICAL CHARACTERISTICS

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Color Chromaticity	Red	Rx	θ _x =0°, θ _Y =0° CS-1000	Typ - 0.05	0.619		-	(1), (5)
		Ry			0.357	Typ + 0.05	-	
	Green	Gx			0.333		-	
		Gy			0.582		-	
	Blue	Вх			0.145		-	
	Dide	Ву			0.092		-	
	White	Wx			0.308		-	
		Wy			0.316		-	
Center Luminance of White		L _C		450	500	-	-	(4), (5)
Contrast Ratio		CR		1000	1500	-	-	(2), (5)
Response Time		T_R	$\theta_x = 0^\circ$, $\theta_Y = 0^\circ$	-	17	22	ms	(3)
		T_F		-	9	14	ms	
White Variation		δW	$\theta_x = 0^\circ$, $\theta_Y = 0^\circ$	-	-	1.4	-	(5), (6)
Viewing Angle	Horizontal	θ_x +	CR≥10	80	88	-	Deg.	(1), (5)
		θ_{x} -		80	88	-		
	Vertical	θ_{Y} +		80	88	-		
		θ_{Y} -		80	88	-		

Measuring Condition


To be measured on the center area of panel after 10 minutes operation.

• Measuring surrounding : Dark room

● Ambient temperature: 25±2°C

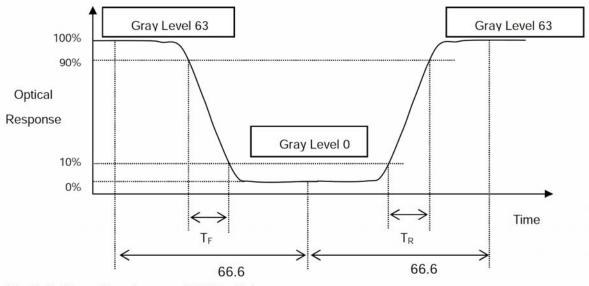
• 15min. Warm-up time.

Note (1) Definition of Viewing Angle (θx , θy):

Note (2) Definition of Contrast Ratio, (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio, CR = L63 / L0


L63: Luminance of gray level 63

L 0: Luminance of gray level 0

CR = CR(5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

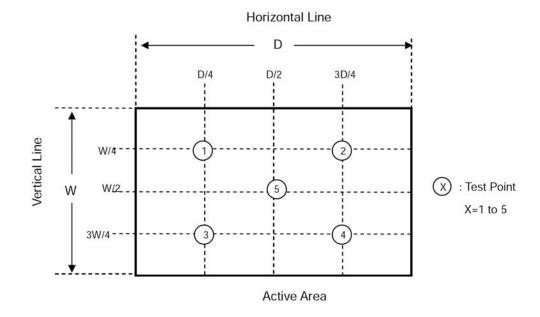
Note (3) Definition of Response Time (T_R, T_F) and measurement method:

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 63 at center point and 5 points

 $L_C = L$ (5), where L (X) is corresponding to the luminance of the point X at the figure in Note (6). Note (5) Measurement Setup:

The LCD assembly should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a windless room.



Note (6) Definition of White Variation (δW):

Date: 2021/09/14

Measure the luminance of gray level 63 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

9. RELIABILITY TEST CONDITIONS

Test Item	Test Conditions	Note
High Temperature Operation	80±3°C ,Dry t=240 hrs	
Low Temperature Operation	-30±3°C, Dry t=240 hrs	
High Temperature Storage	80±3°C , Dry t=240 hrs	1,2
Low Temperature Storage	-30±3°C ,Dry t=240 hrs	1,2
Thermal Shock Test	-20°C ~ 25°C ~ 70°C 30 m in. 5 min. 30 min. (1 cycle) Total 100 cycle(Dry)	1,2
Storage Humidity Test	60 °C, Humidity 90%, 240 hrs	1,2
Vibration Test (Packing)	Sweep frequency : 10 ~ 55 ~ 10 Hz/1min Amplitude : 0.75mm Test direction : X.Y.Z/3 axis Duration : 30min/each axis	

- Note(1) Condensation of water is not permitted on the module.
- Note(2) The module should be inspected after 1 hour storage in normal conditions (15-35°C, 45-65%RH).
- Note(3) The module shouldn't be tested over one condition, and all the tests are independent.
- Note(4) All reliability tests should be done without the protective film.

Definitions of life end point:

- Current drain should be smaller than the specific value.
- Function of the module should be maintained.
- Appearance and display quality should not have degraded noticeably.
- Contrast ratio should be greater than 50% of the initial value.

10. USE PRECAUTIONS

10.1 Handling Precautions

- 10.1.1. The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- 10.1.2. If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.
- 10.1.3. Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- 10.1.4. The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- 10.1.5. If the display surface is contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:
 - Isopropyl alcohol
 - Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer.

Especially, do not use the following:

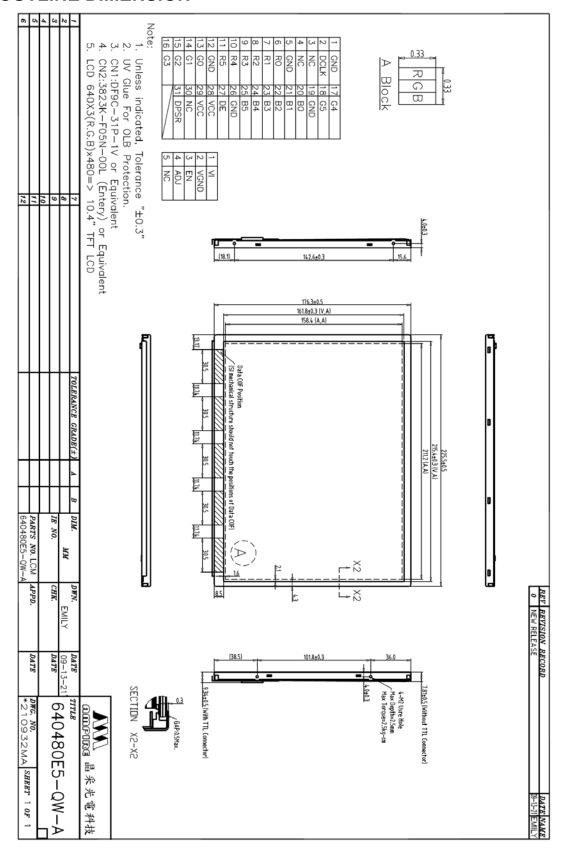
- Water
- Ketone

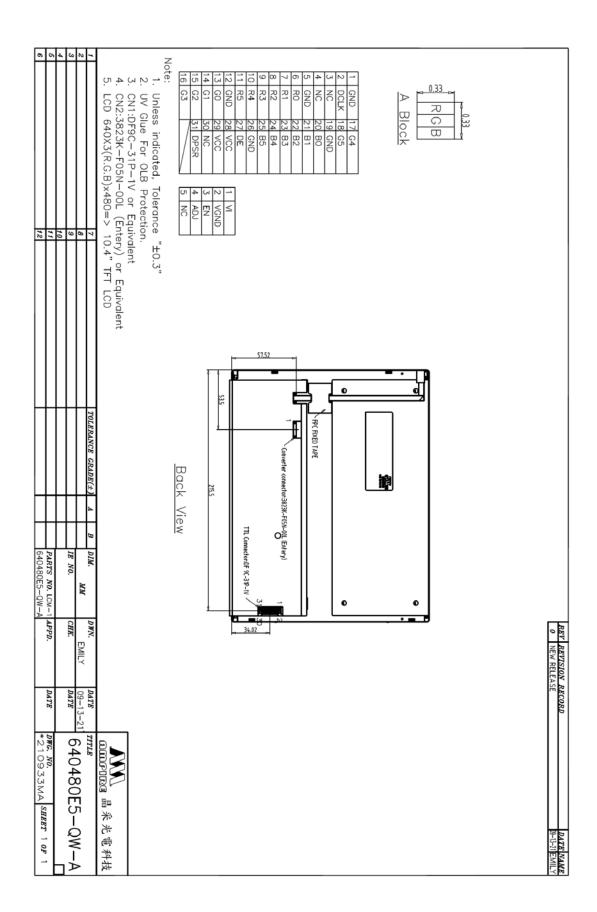
- Aromatic solvents
- 10.1.6. Do not attempt to disassemble the LCD Module.
- 10.1.7. If the logic circuit power is off, do not apply the input signals.
- 10.1.8. To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
- 10.1.8.1. Be sure to ground the body when handling the LCD Modules.
- 10.1.8.2. Tools required for assembly, such as soldering irons, must be properly ground.
- 10.1.8.3. To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
- 10.1.8.4. The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.

10.2 Storage Precautions

- 10.2.1. When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.
- 10.2.2. The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is:

 Temperature : 0°C ~ 40°C Relatively humidity: ≤80%
- 10.2.3. The LCD modules should be stored in the room without acid, alkali and harmful gas.


10.3 Transportation Precautions


The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.

10.4 Other

- 10.4.1 AMIPRE will provide one year warrantee for all products and three months warrantee for all repairing products.
- 10.4.2 Do not keep the LCD at the same display pattern continually. The residual image will happen and it will damage the LCD. Please use screen saver.

11. OUTLINE DIMENSION

